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Fig. 1: An illustration of how GRAPPA intervenes in the action loop of pre-trained robotic policies in failure cases to
provide visuomotor guidance generated with an agentic framework of agents to shift the action distribution for correct task
execution.

Abstract— Robot learning approaches such as behavior
cloning and reinforcement learning have shown great promise in
synthesizing robot skills from human demonstrations in specific
environments. However, these approaches often require task-
specific demonstrations or designing complex simulation envi-
ronments, which limits the development of generalizable and
robust policies for unseen real-world settings. Recent advances
in the use of foundation models for robotics (e.g., LLMs, VLMs)
have shown great potential in enabling systems to understand
the semantics in the world from large-scale internet data.
However, it remains an open challenge to use this knowledge to
enable robotic systems to understand the underlying dynamics
of the world, to generalize policies across different tasks,
and to adapt policies to new environments. To alleviate these
limitations, we propose an agentic framework for robot self-
guidance and self-improvement, which consists of a set of role-
specialized conversational agents, such as a high-level advisor, a
grounding agent, a monitoring agent, and a robotic agent. Our
framework iteratively grounds a base robot policy to relevant
objects in the environment and uses visuomotor cues to shift
the action distribution of the policy to more desirable states,
online, while remaining agnostic to the subjective configuration
of a given robot hardware platform. We demonstrate that our
approach can effectively guide manipulation policies to achieve
significantly higher success rates, both in simulation and in
real-world experiments, without the need for additional human
demonstrations or extensive exploration.

I. INTRODUCTION

In recent years, the emergence of foundation models,
including pre-trained large language models (LLMs) and
vision language models (VLMs), has enabled impressive
capabilities in understanding context, scenes, and dynamics
in the world. Furthermore, emergent capabilities such as in-
context learning have shown great potential in the transfer

of knowledge between domains, e.g., via few-shot demon-
strations or zero-shot inference. However, the application of
these models to robotics is still limited, given the intrinsic
complexity and scarcity of human-robot interactions and
the lack of large-scale datasets of human-annotated data or
demonstrations [1], [2].

Approaches that leverage LLMs and VLMs alongside
robotics systems often fall into one of two categories. The
first category is that of using foundation models as zero-
shot planners, code-generators, and task-descriptors—all of
which attempt to use the foundation model to provide some
high-level instruction to a low-level policy or to describe
the policy’s actions in natural language [3], [4], [5], [6] or
generated plans as code [7], [8]. While these works have
illustrated impressive reasoning capabilities, they still require
either learning additional mappings to interface the generated
natural language instructions with the low-level policy or, in
the case of the code generation examples, they rely on pre-
existing handcrafted primitives to compose. The secondary
category fine-tunes foundation models for robot learning,
using large corpora of robotic demonstration datasets to
supervise part or all of the policy to learn to perform tasks
in an end-to-end manner, [9], [10], [11]. While effective in-
domain, methods often struggle to generalize to novel object
categories, tasks, and environments unseen during training,
and may suffer from negative transfer when trained on very
diverse collections of robot data [12], [13].

In this paper, we extend the deployability of robot policies
by using foundation models to generate low-level visuomotor
guidance to handle out-of-distribution scenarios, such as
sim-to-real differences or new tasks and robot platform



variations (Figure 4). We design an agent-based framework,
where a team of conversational agents works together to
refine the action distribution of a robot’s base policy, via
grounded visuomotor guidance (Figure 1). As illustrated in
Figure 3, and upon a request from the advisor agent, the
grounding agent can look for objects through a combination
of detection, tracking, and high-level reasoning, to broaden
or restrict the search as the context demands. Once the
target object has been visually located, the Monitor and
Advisor agents generate a guidance function that outputs a
biasing guidance distribution, which, when combined with
the action distribution of the Robotic agent (policy), ensures
that the policy can complete task-relevant behaviors until it
succeeds. In this way, the agentic framework bridges high-
level reasoning with low-level control, enabling systems to
reason about failure and self-guide.

In simulated and real-world experiments, we compre-
hensively and empirically demonstrate that our framework
for Generalizing and Adapting Robot Policies via Online
Agentic Guidance (GRAPPA) provides robustness for a va-
riety of representative base policy classes to sim-to-real
transfer paradigms and out-of-distribution settings, such as
unseen objects.

In summary, our paper provides the following contribu-
tions:
• We propose GRAPPA, an agentic robot policy framework

that self-improves by generating a guidance function to
update base policies’ action distributions, online. Our
framework is capable of learning skills from scratch after
deployment and generalizes across various base policy
classes, tasks, and environments.

• For robustness against cluttered and unseen environments,
we propose a grounding agent that performs multi-granular
object search, which enables flexible visuomotor ground-
ing.

• We provide experimental results showcasing GRAPPA as a
helper tool for aiding in the sim-to-real transfer of policies
without the need for extensive data collection.

II. RELATED WORK

Vision-Language Models for Robot Learning: Several
works explore the notion of leveraging pre-trained or
fine-tuned Large Language Models (LLMs) and/or Vision-
Language Models (VLMs) for high-level reasoning and
planning in robotics tasks [1], [5], [7], [14], [8], [15], [16],
[17], [18], [19], [20], [21]—typically decomposing high-level
task specification into a series of smaller steps or action
primitives, using system prompts or in-context examples
to enable powerful chain-of-thought reasoning techniques.
This strategy of encouraging models to reason in a step-
wise manner before outputting a final answer has led to
significant performance improvements across several tasks
and benchmarks [1]. Despite these promising achievements,
these approaches rely on handcrafted primitives [5], [14], [7],
[18], struggle with low-level control, or require large datasets
for retraining. Furthermore, various approaches that leverage
VLMs for robot learning suffer from a granularity problem

when using off-the-shelf models in a single-step/zero-shot
manner [22] or are unable to perform failure correction
without costly human intervention [14], [18], [23], [22]. In
contrast, our framework bridges high-level reasoning with
low-level control, by leveraging an agentic framework for
online modification of a base policy’s action distribution at
test-time, without requiring human feedback or datasets for
fine-tuning. Moreover, we mitigate the granularity problem
by proposing a flexible and recursive grounding mechanism
that uses VLMs to query open-vocabulary perception models.
Agent-based VLM frameworks in Robotics: Rather than
using single VLMs in an end-to-end fashion, which might
incur issues in generalization and robustness, various works
have sought to orchestrate multiple VLM-based agents to
work together in an interconnection multi-agent framework.
Here, multiple agents can converse and collaborate to per-
form tasks, yielding improvements for the overall frame-
work in online adaptability, cross-task generalization, and
self-supervision [24], [25], [26]. These agentic frameworks
have provided possibilities for enabling the identification of
issues in task execution, providing feedback about possible
improvements. Challenges remain, however, in that this
feedback is often not sufficiently grounded on the spatial,
visual, and dynamical properties of embodied interaction
to be useful for policy adaptation; instead, the generated
feedback is often too high-level or provides merely binary
signals of success or failure.
Self-guided Robot Failure Recovery: [27] offer an analysis
of frameworks for leveraging VLMs as behavior critics.
Some approaches have explored integrating such pre-trained
models to improve the performance of reinforcement learn-
ing (RL) algorithms. For instance, [19] use LLMs in a
zero-shot fashion to design and improve reward functions,
however this approach relies on human feedback to generate
progressively human-aligned reward functions and further
requires simulated retraining via RL, with high sample-
complexity. On the other hand, [28] avoid the need for
explicit human feedback by directly using a VLM (CLIP)
to compute the rewards to measure the proximity of a state
(image) to a goal (text description), enabling gains in sample-
efficiency for guiding a humanoid robot to perform various
maneuvers in the MuJoCo simulator. A limitation of this
approach, however, lies in the difficulty of generating rewards
for long-horizon or multi-step tasks, which are character-
istic of tasks involving complex agent-object interactions.
[6] present a framework for detecting and analyzing failed
executions automatically. However, their system focuses on
explaining failure causes and proposing suggestions for re-
mediation, as opposed to also performing policy correction.
In this paper, we propose a framework that directly adapts a
base policy’s action distribution, during deployment, without
requiring additional human feedback.

III. GROUNDING ROBOT POLICIES WITH GUIDANCE

A. Problem Formulation

We consider a pre-trained stochastic policy π : O×S → A
that maps observations ot and robotic states st to action



Fig. 3: Information flow between the agents to produce a guidance code. a) The advisor agent orchestrates guidance code
generation by collaborating with other agents and using their feedback to refine the generated code. b) The grounding agent
uses segmentation and classification models to locate objects of interest provided by the advisor, reporting findings back to
the advisor. c) The robotic agent uses a Python interpreter to test the code for the specific robotic platform and judge the
adequacy of the code. d) The monitor agent analyses the sequence of frames corresponding to the rollout of the guidance
and give feedback on potential improvements.

distributions aπ,t, at each time step t. Our objective is to
generate a guidance distribution gt that, when combined
with this base policy, enhances overall performance during
inference without requiring additional human demonstrations
or extensive exploration procedures. Specifically, we aim to
develop a modified policy πguided : O×S → A that achieves
better performance on tasks where the original policy π
struggles. We define this new policy as follows:

πguided(ag,t|ot, st) = π(aπ,t|ot, st) ∗G(aπ,t|ot, s′t+1), (1)

where G : A × O × S → [0, 1] is a guidance function
that maps observation ot, action at, possible future state
s′t+1 into a guidance score gt. The ‘∗’ operator here denotes
the operation of combining both distributions conceptually,
which we explore in detail in Section III-D. For the scope of
this project, we assume that a dynamics model D : S×A→
S is available, which can forecast possible future states of
the robot s′t+1 = D(st, aπ,t) given the current state st and
action aπ,t.

Focusing on leveraging the world knowledge of Vision
Language Models, while avoiding adding latency to the
action loop, we choose to express these guidance functions as
Python code. By integrating these code snippets into action
loop of the base policies, we eliminate the need of time-
consuming queries to large reasoning models.

B. A Multi-agent Guidance framework for Self Improvement

In order to generate the guidance function G, we leverage
a group of conversational agents empowered with visual
grounding capabilities and tool usage. Illustrated in Figure 3,
the framework is composed of four main agents: an Advisor
Agent, the Grounding Agent, the Monitor Agent, and the
Robotic Agent.

Fig. 4: Heatmap visualiza-
tion of the guidance distribu-
tion, generated online by our
proposed agentic framework,
which produces code that bi-
ases a robot policy’s action
distribution towards desirable
behavior.

Advisor Agent. A Vision Language Model is responsible for
breaking down the task and communicating with the other
agents to generate a sound guidance function for a given
task.
Grounding Agent. A Vision Language Model that iteratively
queries the free-form text segmentation models to locate [29],
[30], track [31], and describe elements relevant to the task
execution.
Monitor Agent. Responsible for identifying the causes of
the failures in the unsuccessful rollouts, the Monitor Agent
consists of a Vision Language model equipped with a key
frame extractor.
Robotic Agent. Language Model equipped with descriptions
of the robot platform, a robot’s dynamics model and wrapper
functions for integration with the base policy. It criticizes the
provided guidance functions to reinforce its relevance to the
task and alignment with the robot’s capabilities.

C. Guidance Procedure

The conversational agents interact with each other through
natural language and query their underlying tools to itera-
tively produce a guidance code tailored to the task at hand,
the environment, and the robot’s capabilities. The informa-
tion flow between these agents is depicted by Figure3.



For a given task expressed in natural language and an
image of the initial state of the environment, the Advisor
Agent uses Chain-of-Tought [32] strategy to generate a high-
level plan of the steps necessary to accomplish the task.
Being able to query a Grounding Agent and the Robotic
agent, the Advisor is able to collect relevant information
about trackable objects and elements in the environment,
as well as the capabilities and limitations of the robotic
platform.

Given a plan and list of relevant objects required for
the task completion, the Grounding Agent uses Grounding
Dino [30] and the Segment Anything Model (SAM) [29] to
locate the elements across multiple granularities and levels of
abstraction. If an object (e.g., “cup”) is not found, it searches
for semantically similar items (e.g., “mug”) or parent ob-
jects (e.g., “shelf”) to refine detection. Found objects are
tracked via DeAOT [33], enabling a flexible segment-and-
track pipeline [29]. Object statuses inform the Advisor Agent
for plan revision or guidance generation.

The Robotic agent acts as a critic to improve the guidance
function generated. Equipped with a Python interpreter and
details of the base policy’s action space, the agent can
evaluate the guidance function in terms of feasibility and
relevance to the robot’s capabilities. Once a function suffices
the system’s requirements, it is saved to be used in the action
loop, in combination with the dynamics model, to provide a
guidance score for possible actions sampled from the base
policy.

After the execution of a rollout and the identification
of failure in the task completion, the Monitor Agent is
triggered to analyze the causes of the failure. By extracting
key frames from the rollout video using PCA [34] and K-
means clustering, the agent can feed a relevant and diverse
set of images to the Visual Language Model prompted to
access the failure causes. In the iterative applications of our
framework, the Monitor Agent provides this feedback to the
Advisor Agent, which can use this information to refine the
guidance functions generated in the previous iterations.
Temporal-aware Guidance Functions. Inspired by recur-
rent architectures, we instruct the agents to generate guidance
function conditioned on a customizable hidden state (ht)
expressed as an optional dictionary parameter as shown in
the following example:

1 # Guidance function example in the context of
grabbing a mug

2 def guidance_code(state,
3 hidden_state={"mug_reached": False,"mug_grabbed

":False}):
4 #available grounding functions
5 #x,y,z = get_pose("mug")
6 #h,w,d = get_size("mug")
7 #rx,ry,rz = get_orientation("mug")
8 ...
9 return score, new_hidden_state

The idea of using abstraction in a hidden state has proven
to significantly improve the guidance performance, allowing
the guidance functions to keep track of the task progress
and adapt the guidance to longer horizon tasks. The guided

policy can thus be written as:

πguided(ag,t|ot, st, ht) = π(aπ,t|ot, st)∗G(aπ,t|ot, s′t+1, ht).
(2)

The complete guidance procedure is summarized in Algo-
rithm 1. Note that we refer to the self-orchestrated conver-
sation between the agents which yields the guidance code as
the function Generate Guidance Function.

D. Guidance and policy integration
Aiming to guide a wide range of policies, our framework

is designed to work both with continuous and discrete action
spaces. In this section, we discuss the operation of combining
the guidance function with the base policy’s action distribu-
tions. Furthermore, we discuss how deterministic regression
models can be adapted to work with our framework.
Action-space Adaptation. We assume the availability of a
dynamics model D that can forecast possible future states of
the robot given a possible action a′π,t. In the manipulation
domain, a dynamics model is often available in the form
of a forward kinematics model, a learned dynamics model,
or a simulator. Oftentimes, the action space A of policies
them-self is the same as the robot’s state S either being or
joint angles of the robot or the gripper’s end-effector pose.
For the last cases, where both the action and state space
are expressed in SE(3) integrating the guidance function
with a base policy would only require a multiplication of
the guidance scores with the action probabilities of the base
policy. In other scenarios, adapting the robot’s action and
state space to match the representation of the visual cues
(position, orientation, and size) would be required.

Algorithm 1 Guidance procedure of GRAPPA
Input
π: Base policy
D: Dynamics Model
env: Environment

1: for each episode do
2: ot, st ← env.init ▷ observation and initial state
3: G← Generate Guidance Function(ot, st)
4: ht ← Get Hidden State(G(ot, st))
5: for each time step t do
6: Aπ,t ← {π(ot, st)i}ni=0 ▷ Sample n actions
7: πt ← π(Aπ,t|ot, st) ▷ Get action probabilities
8: Sπ,t ← D(st,Aπ,t) ▷ Infer possible future states
9: Gπ,t ← G(ot,Sπ,t, ht) ▷ Compute the guidance

for the sampled possible future states
10: Normalize Gπ,t

11: πguided,t ← πt ∗Gπ,t ▷ Combine distributions
12: at ← Aπ,t [argmax(πguided,t)] ▷ Select the best a
13: ot, st ← env.step(at) ▷ Execute at, update state

st+1 and observation ot+1

14: ht ← Get Hidden State(G(ot, st, ht)) ▷ Update

Considering the visual grounding, the action space and the
state space share the same representation (SE(3)), the oper-
ation to combine the guidance function with the base policy



TABLE I: Performance improvement on the RL-Bench [35] benchmark, by applying 5 iterations of guidance improvement
over unsuccessful rollouts.

Model turn tap open drawer sweep to dust-
pan of size

meat off grill slide block to
color target

push buttons reach and drag close jar put item in
drawer

stack blocks Avg. Success

Act3D 25 demos/task 76 76 96 64 92 84 96 48 60 0 69.2

+1% guidance 80 (+4) 96 (+20) 96 84 (+20) 92 84 100 (+4) 84 (+36) 80 (+20) 8 (+8) 80.4 (+11.2)
+10% guidance 88 (+12) 100 (+24) 96 88 (+24) 92 84 100 (+4) 60 (+12) 80 (+20) 0 78.8 (+9.6)

Act3D 10 demos/task 32 60 84 16 60 72 68 32 44 8 47.6

+1% guidance 44 (+12) 88 (+28) 88 (+4) 24 (+8) 68 (+8) 72 76 (+8) 52 (+20) 60 (+16) 8 58 (+10.4)
+10% guidance 44 (+12) 64 (+4) 84 20 (+4) 68 (+8) 76 (+4) 76 (+8) 40 (+8) 56 (+12) 8 53.6 (+6)

Act3D 5 demos/task 24 0 84 4 8 32 8 8 12 0 18

+1% guidance 48 (+24) 16 (+16) 84 8 (+4) 12 (+4) 40 (+8) 24 (+16) 20 (+12) 20 (+8) 0 27.2 (+9.2)
+10% guidance 24 0 84 8 (+4) 12 (+4) 44 (+12) 20 (+12) 8 20 (+8) 0 22 (+4)

Diffuser actor 5 demos/
task

24 64 40 28 44 68 40 24 44 0 37.6

+1% guidance 40 (+16) 92 (+28) 64 (+24) 40 (+12) 44 68 52 (+12) 24 84 (+40) 0 50.8 (+13.2)
+10% guidance 40 (+16) 84 (+20) 52 (+12) 28 52 (+8) 68 48 (+8) 32 (+8) 76 (+32) 0 48 (+10.4)

can be expressed as an element-wise weighted average:

πguided = (1− α)π · αG, (3)

where α ∈ [0, 1] represents the percentage of guidance
applied with respect to the base-policies distribution and is
here denoted as guidance factor.
Adaptation of Regression Policies. To properly leverage the
high-level guidance expressed in the guidance functions and
the low-level capabilities of the base policy, it is desired that
the policy’s action space be expressed as a distribution. In
the case of regression policies that do not provide uncertainty
estimates, several strategies can be employed to infer the
action distribution. One common approach is to assume a
Gaussian distribution centered at the predicted value and
compute the variance using ensembles of models trained with
different initialization, different data samples, or different
dropout seeds or different checkpoint stages [36]. Other
strategies to infer the distributions of the model include using
bootstrapping, Bayesian neural networks, or using Mixture
of Gaussians [37].

IV. EXPERIMENTS & RESULTS

A. Experimental Setup

We demonstrate the efficacy of GRAPPA, in simulation
on the RL-Bench benchmark [35] and on two challeng-
ing real-world tasks. For the real-world setup, we use the
UFACTORY Lite 6 robot arm as the robotic agent and, as
the end-effector, we use the included UFACTORY Gripper
Lite, a parallel jaw gripper. The arm is mounted on a work-
bench. For perception, we use a calibrated RGB-D Camera,
specifically the Intel RealSense Depth Camera D435i. All
experiments were conducted on a desktop machine with a
single NVIDIA RTX 4080 GPU, 64GB of RAM, and a AMD
Ryzen 7 8700G CPU.
Base Policies: We evaluate the effectiveness of our guidance
framework using different base policies, Act3D [38], 3D
Diffuser Actor [39], and a RandomPolicy. All policies plan
in a continuous space of translations, rotations, and gripper
state (SE(3) × R), however they utilize different inference
strategies:
• Act3D samples waypoints in the Cartesian space (R3)

and predicts the orientation and gripper state for the best

scoring sampled waypoint, combining a classification and
regression strategies into a single policy.

• 3D Diffuser Actor, on the other hand, uses a diffusion
model to compute the target waypoints and infers the
orientation and gripper state from the single forecast
waypoint, thus tackling the problem as a single regression
task.

• RandomPolicy denotes any of the former frameworks that
has not been trained for a specific task, therefore the
weights are randomly initialized.
The fundamentally different types of policies’ outputs

make them a great use case for our policy guidance frame-
work. Furthermore, the common representation of the action
and state spaces of both policies (SE(3) × R) provides a
straightforward integration with our grounding models.

As described in Section III-D, the regression components
of the policies require an adaptation to transform the single
predictions of the model into a distribution over the action
space. For the sake of simplicity, we assume a Gaussian
distribution over the action space, with the mean centered
on the predicted values and the standard deviation fixed on a
constant value. The outputs of the classification component
of Act3D (waypoint positions) were directly considered as
samples of a distribution over the Cartesian space (R3).

The integration of base policies with the guidance dis-
tributions was performed by applying a weighted average
parameterized by α as shown in Equation 3.

B. Experimental Evaluation

Our experimental evaluation aims to address the following
questions: (1) Does GRAPPA enable policies to bridge the
sim-to-real gap for deployment on real-world tasks and
in out-of-distribution settings? (2) Does GRAPPA improve
the performance of pre-trained base policies on specific
robotics tasks and environments without additional human
demonstrations? (3) Does GRAPPA enable policies to learn
new skills from scratch? (4) What is the effect of guidance
on expert versus untrained policies?
Does GRAPPA enable policies to bridge the sim-to-real
gap for deployment on real-world tasks and in out-of-
distribution settings? We first train a 3D Diffuser Actor
policy with 10 tasks with 100 demonstrations each with



a single RGB-D camera setup (GNFactor [40] setting),
using exclusively simulation-based demonstrations. Note that
this policy was chosen as it displayed stronger overall
performance in the simulation benchmark. We roll out this
policy in the real world in the button-pressing task in a
cluttered environment, as depicted by Figure 4. To facilitate
sim-to-real integration, we adapted the dimensions, scale,
and alignment of the real-world workspace to match the
simulation data, and positioned the RGB-D camera (Intel
RealSense) in a similar placement as the camera used to
train the base policy.

TABLE II: Real-world performance improvement in a sim-
to-real setting. Diffuser actor policy trained on 10 tasks in
simulation (GNFactor [40] setup: 100 demos/task) and eval-
uated on the tasks “Push buttons” with different guidance
levels. Red cells refer to failures due to timeouts in task
execution. Orange cells refer to errors in perception. Green
cells refer to successes.

Policy Task completion Success Rate [%] Error Breakdown

Naive Sim2Real 0.0

+15% guidance 66.7
+50% guidance 50.0
+75% guidance 100

Finetuned Baseline (10 real-world demos) 33.0

+15% guidance 50.0
+50% guidance 16.7
+75% guidance 100

As depicted by Table II, the cluttered scenario in Figure
4 has shown to be out-of-distribution scenarios for the
base policy that was solely trained in simulation (Naive
Sim2Real). Fine-tuning the policy with 10 real-world demon-
strations of pressing buttons in uncluttered environments has
proven to slightly increase the performance of the policy.
These base policies, combined with our guidance framework,
achieve a higher success rate in 5 out of the 6 scenarios with
guidance. In the only exception case (finetuned baseline +
50%), the base perception models failed to detect and keep
track of the target button during the rollout—leading to a
detrimental guidance of the policy.

A known limitation of diffusion-based policies is their
struggle to generalize beyond their training set. To test the
ability of GRAPPA to remedy this type of situation, we
again take a policy trained in simulation and fine-tune on 15
demonstrations of a pick-and-place task in the real world,
shown in Figure 5. We assess across two axes of general-
ization: 1) position generalization, where the objects are the
same as used in the training demonstrations, but positions
of the target are different; and 2) appearance generalization,
where we vary the type of object used, while keeping the
same semantic class of objects. Table III showcases the
qualitative results for 10 rollouts: we see that in both types of
generalization, the 3D Actor Diffuser is unable to complete
the task in any trial, while GRAPPA using 50% of guidance
succeeds in 3 out of 5 cases for position generalization and
4 out of 5 for appearance generalization.

TABLE III: GRAPPA guiding the base policy for out-of-
distribution cases, illustrated in Figure 5.

Position Appearance
Baseline SR 1 2 3 4 5 SR

3D Actor Diffuser 0/5 ✗ ✗ ✗ ✗ ✗ 0/5
+ GRAPPA (50%) 3/5 ✓ ✗ ✓ ✓ ✓ 4/5

Fig. 5: GRAPPA guiding the base policy for out-of-
distribution cases. The task involves grasping a deformable
toy ball and placing it inside a box.

Across both real-world tasks, a higher percentage of
guidance is necessary compared to the simulation results seen
in Table I. This hints at two practical properties of GRAPPA’s
guidance effect. First, there must be a trade-off between high-
level guidance (provided by GRAPPA) and low-level control
(provided by the base policy); in more complex tasks, ele-
vated guidance values disrupt the robot’s low-level motions,
leading to some failure cases. We compare trajectories of
the failing base policy versus GRAPPA-guided in Figure 6.
Second, the optimal guidance level is also dependent on
the performance of the base policy itself. Notably, while
the simulation-based policy has already achieved a good
performance on the test set, it is unable to deal with out-
of-distribution cases and requires much more correction in
the real-world setting.

Fig. 6: Illustration of the effect of different guidance percent-
ages on a failure case of the base policy. In red we show the
base policy failing in an out-of-distribution scenario; with
100% of guidance (yellow), the end position is successfully
above the box, but it has lost low-level notions. By balancing
both with intermediate guidance (50%) shown in green, we
can complete the task.
Does GRAPPA improve the performance of pre-trained



base policies on specific robotics tasks and environments
without additional human demonstrations? We first assess
the effect of the proposed guidance on the Act3D and
3D Diffuser Actor baselines following the GNFactor [40]
setup, which consists of a single RGB-D camera and table-
top manipulator performing 10 challenging tasks with 25
variations each. Guidance is iteratively generated for the
failure cases. For the failed rollouts, our policy improvement
framework ran for 5 iterations. As displayed by Table I,
the framework was able to improve the success rate of
the base policy on most of the tasks, with the best results
achieved by using 1% guidance. The low amount of guidance
has shown to be enough to bend the action distribution to
the desired direction, while still preserving the low-level
nuances captured by the base policy. This suggests that
GRAPPA is capable of improving base policies by adding
abstract understanding and grounding of the desired task,
while preserving the low-level movement profiles captured
by the original policies.
Does GRAPPA enable policies to learn new skills from
scratch? We evaluated the performance of the framework
on learning new skills from scratch on 4 tasks of the RL-
Bench benchmark: turn tap, push buttons, slide block to color
target, reach and drag. In this setup, we initialized the Act3D
policy with random weights and applied 100% of guidance
(α = 1.0) over the policy for the x, y, and z components.
Only leveraging the waypoint sampling mechanism of Act3D
and overwriting its distribution with the values queried from
the guidance functions generated. The results show that the
framework is capable of learning new skills from scratch,
achieving a higher success rate than the base policy pre-
trained on 5 demonstrations/tasks for the tasks “turn tap”
and “push buttons” tasks. When utilizing only the untrained
Act3D policy (without guidance) the policy achieved 0
success rate on the tasks. Figure 7 demonstrates the itera-
tive improvement of our guidance framework, wherein the
guidance code generated for each failed rollouts from the
previous iteration is iteratively updated.

It is worth mentioning that a few variations of the
simulated tasks “turn tap” and “reach and drag”, which
seemly would require a precise orientation control of the
manipulator, could be solved by guiding only the Cartesian
components of the police’s output. For these variations, a
qualitative analysis shows that successful roll-outs could be
achieved by tapping the end-effector on the target objects.
What is the effect of guidance on expert versus untrained
policies? As discussed previously, GRAPPA can learn tasks
from scratch using a random base policy with 100% of
guidance (α). Given that we are not affecting the policy, the
product of the iterative learning from scratch is the generated
guidance script which captures a high-level understanding
of the task, e.g., spatial relationships, and task completion
criteria, among others. We can qualitatively see the effect of
the learning process by comparing the guidance scripts for
different iterations of the same task.

On the other hand, applying the guidance to an existing
expert policy aims to shift the action distribution to account

Fig. 7: Performance of our framework on learning new
skills from scratch (guidance over untrained policies), and
iteratively improving the guidance functions generated.

for failure cases, like potentially out-of-distribution scenes.
The goal here is to use the gained high-level understanding to
aid the policy in task completion. Table I shows that adding
too much weight to the guidance function can yield dimin-
ishing returns as it can overpower the nuanced low-level
details from the expert policy: notice that the performance
gain across the board is bigger using 1% of guidance.

V. CONCLUSION

Summary: In this work, we proposed GRAPPA, a novel
framework for the self-improvement of embodied policies.
Our self-guidance approach leverages the world knowledge
of a group of conversational agents and grounding models
to guide policies during deployment. We demonstrated the
effectiveness of our approach in autonomously improving
manipulation policies and learning new skills from scratch,
in simulated RL-bench benchmark tasks and in two chal-
lenging real-world tasks. Our results show that the proposed
framework is especially effective in improving the following
high-level task structures and key steps to solve the task.
This capability can be well suited for improving pre-trained
policies that struggle with long-horizon tasks or for learning
new simple skills from scratch.
Limitations: From an analysis of the guided rollouts, a few
of the task variations proved challenging for the perception
models used by the grounding agent, leading to false positive
detections or failure to locate specific objects. This was
mainly observed in the simulation, given that simulated
graphics are often not represented in the training set of
detection models. A potential solution is to integrate more
robust object detection models or verification procedures
to ensure the correct detection of objects in the scene.
Additionally, occasional scene understanding errors by the
VLM led to inaccurate guidance and unexpected behaviors.
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